Online prediction and control in nonlinear stochastic systems
نویسنده
چکیده
In this paper conditional parametric ARX-models are suggested and studied by simulation. These non-linear models are traditional ARXmodels in which the parameters are replaced by smooth functions. The estimation method is based on the ideas of locally weighted regression. It is demonstrated that kernel estimates (local constants) are in general inferior to local quadratic estimates. For the considered application, modelling of temperatures in a district heating system, the input sequences are correlated. Simulations indicate that correlation to this extend results in unreliable kernel estimates, whereas the local quadratic estimates are quite reliable.
منابع مشابه
Neural-Smith Predictor Method for Improvement of Networked Control Systems
Networked control systems (NCSs) are distributed control systems in which the nodes, including controllers, sensors, actuators, and plants are connected by a digital communication network such as the Internet. One of the most critical challenges in networked control systems is the stochastic time delay of arriving data packets in the communication network among the nodes. Using the Smith predic...
متن کاملIdentification of Multiple Input-multiple Output Non-linear System Cement Rotary Kiln using Stochastic Gradient-based Rough-neural Network
Because of the existing interactions among the variables of a multiple input-multiple output (MIMO) nonlinear system, its identification is a difficult task, particularly in the presence of uncertainties. Cement rotary kiln (CRK) is a MIMO nonlinear system in the cement factory with a complicated mechanism and uncertain disturbances. The identification of CRK is very important for different pur...
متن کاملOnline Monitoring for Industrial Processes Quality Control Using Time Varying Parameter Model
A novel data-driven soft sensor is designed for online product quality prediction and control performance modification in industrial units. A combined approach of time variable parameter (TVP) model, dynamic auto regressive exogenous variable (DARX) algorithm, nonlinear correlation analysis and criterion-based elimination method is introduced in this work. The soft sensor performance validation...
متن کاملDesigninga Neuro-Sliding Mode Controller for Networked Control Systems with Packet Dropout
This paper addresses control design in networked control system by considering stochastic packet dropouts in the forward path of the control loop. The packet dropouts are modelled by mutually independent stochastic variables satisfying Bernoulli binary distribution. A sliding mode controller is utilized to overcome the adverse influences of stochastic packet dropouts in networked control system...
متن کاملDynamic Sliding Mode Control of Nonlinear Systems Using Neural Networks
Dynamic sliding mode control (DSMC) of nonlinear systems using neural networks is proposed. In DSMC the chattering is removed due to the integrator which is placed before the input control signal of the plant. However, in DSMC the augmented system is one dimension bigger than the actual system i.e. the states number of augmented system is more than the actual system and then to control of such ...
متن کاملAdaptive fuzzy pole placement for stabilization of non-linear systems
A new approach for pole placement of nonlinear systems using state feedback and fuzzy system is proposed. We use a new online fuzzy training method to identify and to obtain a fuzzy model for the unknown nonlinear system using only the system input and output. Then, we linearized this identified model at each sampling time to have an approximate linear time varying system. In order to stabilize...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2002